Methods for Analyzing Multivariate Phenotypes in Genetic Association Studies.
نویسندگان
چکیده
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Multivariate phenotypes are frequently encountered in genetic association studies. The purpose of analyzing multivariate phenotypes usually includes discovery of novel genetic variants of pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the underlying genetic mechanism. In recent years, there have been new method development and application of existing statistical methods to such phenotypes. In this paper, we provide a review of the available methods for analyzing association between a single marker and a multivariate phenotype consisting of the same type of components (e.g., all continuous or all categorical) or different types of components (e.g., some are continuous and others are categorical). We also reviewed causal inference methods designed to test whether the detected association with the multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some phenotypes through affecting the others.
منابع مشابه
Single Nucleotide Polymorphisms and Association Studies: A Few Critical Points
Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...
متن کاملJoint analysis of multiple blood pressure phenotypes in GAW19 data by using a multivariate rare-variant association test
INTRODUCTION Large-scale sequencing studies often measure many related phenotypes in addition to the genetic variants. Joint analysis of multiple phenotypes in genetic association studies may increase power to detect disease-associated loci. METHODS We apply a recently developed multivariate rare-variant association test to the Genetic Analysis Workshop 19 data in order to test associations b...
متن کاملIdentifying Pleiotropic Genes in Genome-Wide Association Studies for Multivariate Phenotypes with Mixed Measurement Scales
We propose a multivariate genome-wide association test for mixed continuous, binary, and ordinal phenotypes. A latent response model is used to estimate the correlation between phenotypes with different measurement scales so that the empirical distribution of the Fisher's combination statistic under the null hypothesis is estimated efficiently. The simulation study shows that our proposed corre...
متن کاملMultivariate phenotype association analysis by marker-set kernel machine regression.
Genetic studies of complex diseases often collect multiple phenotypes relevant to the disorders. As these phenotypes can be correlated and share common genetic mechanisms, jointly analyzing these traits may bring more power to detect genes influencing individual or multiple phenotypes. Given the advancement brought by the multivariate phenotype approaches and the multimarker kernel machine regr...
متن کاملMultivariate Functional Regression Models for Epistasis Analysis
To date, most genetic analyses of phenotypes have focused on analyzing single traits or, analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power, and hold the key to understanding the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of probability and statistics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012